
Study of self-inhibited analogue neural networks using the self-consistent signal-to-noise

analysis

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 4799

(http://iopscience.iop.org/0305-4470/25/18/014)

Download details:

IP Address: 171.66.16.58

The article was downloaded on 01/06/2010 at 17:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys A Math. Gen. 25 (1992) 47994811. Printed in the UK 

Study of self-inhibited analogue neural networks using the 
self-consistent signal-to-noise analysis 
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i Depanment of Applied Physicr, lbkyo Institule of Technology, Ohokaayama, Megum-ku, 
lbkyo, Japan 
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AbslneL We study an analogue neural network model whose response function is linear 
and wnsequenlly has no asymptotes in order to examine a passible new mechanism for 
regulating neuron activities bj means of neural feedback Circuits Inhibitory selfcoupling 
is inlmduced as an example of such feedback mechanisms, which for simplicity of the 
analysis is assumed to be piecewise linear. Our recently developed vlfconsistent signal- 
lo-noise analysis is applied lo explore the equilibrium properlies of the model neural 
network. The analysis revealed that there exis6 a Gnile optimal value for the linear 
analogue gain that maximizes storage capacity for a given value of lhe selfcoupling. 
?he resulfs of the analysis lor such equilibrium properlies as storage capacity are quite 
wnsistent with the results of mmputer simulations. 

1. Introduction 

Various attempts have been made to understand the retrieval properties of analogue 
neural networks since the models are of importance from the point of view of elec- 
tronic implementation as well as relevance to physiological nerve systems (Hopfield 
1984, Marcus and Westervelt 1989, Marcus el a1 1990, Wugh ef 01 1990, Fukai and 
Shiino 199oa, Shiino and Fukai 1990, Kiihn et 01 1991, Fukai and Shiino 1991). Usu- 
ally in analogue networks, the response function of a neuron is assumed to be of 
sigmoid-type with proper asymptotes, which introduces a necessay cut-off for the ac- 
tivity of a neuron. It seems, however, that the mechanism for regulating the activation 
of neurons has to he studied more seriously since a low firing rate (Miyashita and 
Chang 1988, 'Isodyks and Feigel'man 1988, Amari 1989, 'Iteves and Amit 1989, -eves 
1990) in living nervous systems may imply the necessity of a very different scheme 
for the cut-off of neuron activities. Some authors, for instance, introduced a non- 
monotonic response function which may appear as a consequence of local feedback 
from surrounding inhibitory neurons to lower the avarage activity level of neurons 
(Morita et a1 1990). One of the aims of the present paper is to examine the network 
properties of the models incorporating a new type of mechanism to regulate excessive 
neuron activities. 

'lb this end, we introduce self-coupling into symmetric neural networks as a simple 
example of a local feedback mechanism for inhibiting the activity of each neuron. 
The self-coupling is assumed to act when the neuron activity exceeds a certain critical 
level. In neural networks with an appropriate local inhibition scheme, the response 
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function may not necessarily have asymptotes. In the present paper, we assume for 
simplicity that the response function is linear, and, consequently, has no asymptotes. 
The model is found to yield an interesting feature, in contrast to the usual sigmoid- 
type analogue neural networks, in that there exists an optimal finite linear analogue 
gain which maximizes the storage capacity for a given value of the magnitude of the 

The introduction of a linear response function with no asymptotes in the present 
model may give rise to the drawback that the energy function becomes unbounded 
from below in a certain case. We can, however, confine ourselves to discussing the 
properties of locally stable tixed points for the memory retrieval of a network attained 
by converging dynamical flows even if the energy function is globally unbounded from 
below. The conventional thermodynamic approach using the replica method (Amit er 
al 1985) will require a delicate argument of its validity in the case of the downwards 
unbounded energy function since the thermal equilibrium distribution may not be 
properly defined through the stochastic relaxation process which happens to yield 
run-away trajectories downwards infinitely. 

Recently, by extending the so-called signal-to-noise analysis (McEliece et a1 1987, 
Peretto 1988, Amari and Maginu 1988, Domany et a1 1989) which does not require the 
existence of an energy function, we proposed a new method, which is straightforward 
and easy to handle to analyse the statistical properties of the equilibrium states of 
analogue neural networks. The validity of the method (hereafter referred to as 
self-consistent signal-to-noise analysis, SCSNA) is ensured for conventional symmetric 
analogue networks (Hopfield 1982, 1984, Amit et a1 1987) since it yields the same 
set of equations for determining the equilibrium states as that derived by means 
of the replica method. The method is also available for the analysis of king-spin 
neural networks when the corresponding Thouless-Anderson-Palmer (TAP) equations 
(Thouless et a1 1977, Mkzard ef a1 1987) are known. Furthermore, as far as k e d -  
p i n t  equilibrium attractors are concerned, SCSNA can be applicable even to analogue 
neural networks with asymmetric coupling. Indeed SCSNA was successfully applied to 
an asymmetric analogue neural network to yield a storage capacity which is consistent 
with simulation results (Shiino and h k a i  1991). The second aim of the present paper 
is to examine whether SCSNA works for the present network model which possibly has 
a bottomless energy function. 

The paper is organized as follows. In section 2, the model is presented together 
with its energy function. The retrieval states for a finite number of patterns is 
discussed in section 3. In section 4, SCSNA is applied to the derivation of equations 
for the order parameters when the network is loaded with an extensive number of 
patterns. In section 5, the equations obtained are numerically solved and the phase 
diagram is presented for various cases. Computer simulations are also conducted. We 
shall see that the results from SCSNA on the equilibrium properties of the model is in 
quite good agreement with those of the computer simulations. Section 6 is devoted 
to concluding remarks. 

T Fukai and M Shiino 

self-coupling. 

2. Neural nehvork model with self-coupling 

We provide a set of variables ui and zi (-ca < U!,. zi < ca, i = 1 ,..., N) 
representing a membrane potential and the output acuvity of neuron i, respectively. 
The response function f which defines the relation between the two quantities zi = 
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f (ui)  is usually taken to be a sigmoid function with suitable asymptotes, say, f = 
tanh(pu;)  with an analogue gain p. In the present paper, however, we assume 
linearity for the response function: 

f (u)  = Pu (0 > 0). (1) 

Now we need to introduce a mechanism to lower the activity of excessively activated 
neurons. In the present model, such a mechanism is provided by feedback through 
the self-coupling of the neurons, that is the output activity of a neuron is suppressed 
by the inhibition introduced through the self-coupling if its activity level exceeds a 
certain threshold Yo. If hi and J i j  denote the input stimulus for neuron i and the 
synaptic coupling between neurons i and j ( #  i), respectively, the time evolution of 
ui is given by 

with the self-coupling response function 

J ( z - G )  z > y ,  

f s ( . ) =  J ( z + y , )  z<-Yo ( J >  0) (4) io otherwise. 

This equation implies that the self-coupling term acts as a regulator to adjust the 
neuron-activity &the neighbourhood of the threshold activity &&. Although SCSNA 
can deal with a certain type of asymmetric synaptic coupling (Shiino and Fukai 1991) 
we here assume, for the sake of simplicity, that the  synaptic coupling is given by the 
standard Hebb rule, Le. 

where each component of p embedded biased random patterns {(i’)} ( p  = 1,. . . , p) 
takes on +1 and -1 with probabiIities (1  + a ) / 2  and (1 - a ) / 2 ,  respectively. 

This model can be shown to have an energy function E: 

+ (zi  + - yo)]. (6) 

The condition that equation (6) has a lower bound is easily obtained as follows. 
We first note that the necessary and sufficient condition for the non-existence of 
such a diverging motion as zi(l) - fco, Izj ( t ) l  < Yo ( i  = 1, ..., r N ,  j = 
r N  + 1, ..., N ;  0 < r < 1) i that the matrix 

M,, = -J, ,  + 6,,,,((1/O) + J )  1,m = 1,. . . , r N  (7) 
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is positive definite. For the Hebb rule (S), this condition is ensured if inequality 
J > -(l /P) + r(l - a2)(1 + Z m )  holds. We now see that 

T Fukai and M Shiino 

J > - ( l / P )  t (1 - aZ) ( l  + Z&) (8) 

ensures the existence of a lower bound for equation (6). In this case, the network 
allows no run-away Uajectories and hence will function normally as an associative 
memory. 

The network state evolves so as to decrease the value of the energy function. Since 
the self-coupling (4) is a unique mechanism in the present system for stabilizing the 
neuron activity and functions only when the magnitude of output activity is larger 
than the threshold, it is naturally expected that ( ip )z i  2 y0 in the retrieval state 
corresponding to a memory pattern It!”)}. In particular for self-coupling J -+ CO, 

for certain values of J , p  and a = p / N .  
We would like to note that the present approach using SCSNA developed for 

neural networks with infinitely many patterns will, in principle, be available to the 
system in which condition (8) is not obeyed so far as locally stable retrieval states are 
concerned. 

- A v <@) !hP retrip-.! Sfl!P. me:&ce ’he S’n’P {y&)] *i!! Eke;& ”, -051  

3. Case of finite number of patterns 

In the present section, we deal with the case in which the number of pattern p 
is finite to see how the network functions as a content-addressable memory and 
how the retrieval state is defined. Fbr the sake of simplicity we assume that the 
patter% a:e K%xkx2 rind s-hlased (c = 0). Defining ‘he =..Xz!rp =:de: p2r”ers 
g ( Y ) ( v = l ,  . . . , p ) a s  

one can easily obtain values of ui in equilibrium states of the network which will be 
classified into the following three types according to the cases Pui > Yo, /3ui < -Yo 
and IpuiI < Yo: 

Substituting equation (10) into equation (9) in turn yields the self-consistent equation 
for g w  
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+ e(y, - pctIa )g (a ) )e (y ,  + ~ ~ d ” ~ ( n ) ) ~ t l ” ) ~ ( l ) ] .  (11) 
!J n A 

The sum over i will be carried out by introducing the concept of a ‘sublattice’ due 
to the finiteness of p (Hemmen 1982, Riedel et a1 1988, Shih0 a d 1989, Shiino 
1990, Fukai and Shiino l w b ,  Domany et a1 1991). Assuming a pdimensional vector 
E of the hypercube HP = {-1,1}P to represent the sublattice {ilt:”’ = $’’),v = 
1,. . . ,p}, one can rewrite equation (11) as 

where T ( ( )  is the ratio of the size of sublattice specified by to the total number of 
neurons N and is taken to be 2 - P  for each E due to the assumption that the patterns 
are random and unbiased. 

We now consider the y = 2 case to elaborate on the solution to equation (12). 
Setting X(.$1),$2)) = C~=l.$V)g(”) in equation (12) and noting X(-1,-1) = 
-X( 1 , l )  etc, one obtains 

X - JY,  + e ( Y , - ~ x ) e ( Y , + ~ x ) x  1 + P J  + JYO+e(-px-y,) p-lx = e(px-Y,)  1 + P J  
with X representing any of X ( l , l ) ,  X(1,-l), X(-1,l) and X(-1,-1). The 
solution to this equation other than the trivial one X = 0 is given by 

under the condition 

> 1. P 2 J  
1 + P J - P  

Noting g(’) = ( X ( l , l ) + X ( l , - I ) ) / Z  and g( ’ )  = ( X ( l , l ) - X ( l , - l ) ) / ~ ,  one 
has 
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It is easily seen from equation (15) and inequality (14) that the solution g( ' )  = 
*pJYo/(l + pJ - p), g(') = o implies pu (1 , l )  > Y ,  pu(1,-1) > 
y0, p u ( - l , l )  < -Yo and pu( - l , - l )  < -Yo when U(.$'),&) stands for the 
membrane potential of neurons belonging to the sublattice labelled by <. In other 
words, this solution represents the retrieval state of the pattern {e! ' ) )  in which the 
output of neuron i satisfies puicj" > yo. 

.*hic!: the :etrie..,& 
state corresponding to pattern /I is found to exist only when the condition (14) is 
satisfied, i.e. 1 - J < p-' < 1, and to be represented by g ( y )  = ~6+"'JY0/(1 + 

T Fukai and M Shiino 

Eh a:rd.me"t pnfi 9- *"si!y pxtes&$ '" t$e SSeS .*ith ; 2 

p J - p ) ,  U =  1 ). . .(  p .  

4. Self-cnnsistent signal-to-noise analysis 

We now proceed to deal with SCSNA of the present network which is loaded with 
infinitely many patterns. For the time being, we assume an arhitraly input-output 
response function f to show the general framework of sCSNA sCSNA is based on the 
systematic splitting of the signal and noise components of the local field hi appearing 
in the fixed-point equation obtained from equation (2): 

where m(P) = (l/iV)x,((i ') - .)xi are modified pattern overlaps which yield 
order parameters to the present system. Consider the retrieval state corresponding to 
pattern {.$)}, that is m(') - 0 ( 1 )  and m ( p )  - 0 ( 1 / 0 )  ( p  > 1). ScsNAshould be 
distinguished from conventional signal-to-noise analysis (McEliece et al 1987, Peretto 
1988, Amari and Maginu 1988, Domany ef al 1989) in which Cp,l(FiP' - a ) m ( p )  
is viewed as a Gaussian noise with mean 0. Such a naive treatment of the noise 
component proves to be incorrect although it seemingly recovers the result of the 
replica calculation by Amit et al (1985). In SCSNA, one can properly deal with the 
previously mentioned term to extract a systematic contribution which is proportional 

Fixed-point equation (18) implies that zi  can be formally solved as a function of 
to output xi. 

C;=l(~iP' - a ) m ( P J .  

p = l  

'RI work with SCSNA, we first evaluate the pattern overlap for noise-generating patterns 
{[j')) ( p  > 1) which can be written as 

By expanding the right-hand side of this expression with respect to , (PI ,  we can 
obtain 
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where 

with ((. . .)) denoting averaging over biased memory patterns. 

noise-generating term fi 
Now these formal expressions for the pattern overlaps are substituted into the 

~P, l ( .$)  - a)m(’) to yield 

where C = ((3’)). To extract a systematic part from R, we split the j-summation in 
(10) into j # i and j = i terms. Since the former is a sum of almost uncorrelated 
random variables with mean 0, it will be assumed to yield a noise 2 

which obeys a Gaussian distribution with mean 0 and variance 

Here we defined p = ((F2)) which Serves as the Edwards-Anderson order parameter 
for the present system. On the other hand, the j = i term yields a non-vanishing 
systematic part: 

a(1-  a2) 3. l - ( l -aZ)C 

Noting that local field is given by hi = (EI”-a)m(’)+fi-a(l-a2)2i--fS(2i),we 
now obtain from equations (18), (19) and (26) the following equation that determines 
the output response Y 5 F implicitly as a function of noise z :  

a( 1 - a2)ZC 
y - MY)) 1 - (1 - a2)C Y = f((( - a ) m  + f + 

where we have renamed tI1’ and m(’) as and m, respectively. Now the separation 
of the signal and noise components is properly done since equation (27) completely 
determines the dependence of the response on signal ( E  - a)m and noise 2. 

This expression reveals that local field hi obeys a non-Gaussian distribution due to 
the nonlinearity involved in equation (27) although noise z has been assumed to obey 
a Gaussian distribution. The appearance of the systematic part proportional to output 
Y in the local field of equation (27) is characteristic of analogue neural networks 
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and is not observed in stochastic neural networks like the Boltzmann machine. This 
is because that part is cancelled out by the Onsager reaction term appearing in the 
TAP equation for the Boltzmann machine. The extraction of the systematic part from 
noise component in the local field hi has been performed in order to define the 
effective output Y in a self-consistent manner, as seen from equations (20)-(27). For 
this reason, the present method may be called SCSNA. 

Using the definitions of m, q and C and assuming that the average ((. . .)) can be 
replaced by the average over noise z and condensed pattern {, one obtains what is 
usually called saddle-point equations in the neural nerwork theory: 

T Fukai and M Shiino 

where (. . .) stands for the average Over and CT is determined by equation (25). 
Solving this set of equations for m, 9 and C, we obtain phase boundaries for the 
analogue neural networks: retrieval phase (m # 0 ,  9 # 0), spin glass phase (m = 
0, p ji a) and diG:ee:eb phrse (.; = n, p = 0;. 

5. Phase boundaries 

The SCSNA explored in the previous section can be applied straightforwardly to the 
present neural network to obtain 

Y = p(({  - a ) m  + u z  + vy - f s ( Y ) )  

d z  1 2  

V G  
D t  = -exp (-72 ) 

from (28)-(30) after a change of variable v = a(1 - a*)*C/(l - (1 - a’)C) and 
a rescaling z/u + z of the Gaussian integration variable. In general equation (34) 
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allows more than one solution. For such a case, we assume that the available solution 
can be selected by applying the Maxwell rule as will be shown below. This recipe 
was justified in the case of symmetric analogue neural networks with energy functions 
bounded from below where the saddle-point method in the replica calculation ensures 
the validity of the Maxwell rule. We list all the possible cases to be considered, 
although only case A occurs in the numerical analysis of equations (31)-(33) within the 
parameter regions which we will study later. Note that we have assumed p, J > 0. 

Case A (p-' - v > 0) and case B (@-' - v < - J ) .  The solution of equation (34) is 
uniquely determined for any values of z and is given by 

for case A The inequality signs should be reversed for case B. 

Case C (0 > 0-' - v > -J). In a certain range of z, multiple solutions are allowed 
for equation (34) as shown in figure 1 where the solutions are given by nodes of the 
two curves representing both sides of the equation. Then the available solution will be 
given by the one (marked by black dots) determined hy the Maxwell rule which states 
that the solution corresponding to the nodes associated with a larger area enclosed by 
the two curves should be more stable than the others. Therefore we adopt a solution 
with negative Y when z < z* E -(C - a ) / o  and the one with positive Y when 
z > 2,. The value of Y jumps from -Y, to Y, (Y. 3 JYo/( /3- '  - v + J) > 0) at 
z = 2,. Thus 

+ (C - - JYO < z,, Y =  
p - 1 -  v +  J 

(37) 

The phase boundaly between para and spin glass phases is easily obtained by 
linear analysis around m = q = 0. Noting that a solution with vanishing q can 
be allowed only in case A, and zc+ sz & J Y , / o  - f m ,  we can easily perform the 
Gaussian integrations involved in equations (32) and (33) to obtain 

[ v + a ( l  -.')I2 

a(P-1 - v)2  

- v + a(1 -  2)  
1 - a2 4 - I - v  ' 

1 =  

V -- 

(38) 

(39) 
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From equations (38) and (39), we derive the equation that yields the disordered spin 
glass phase boundary: 

T Fuhi  and M Shiino 

P - ' = ( l - a 2 ) ( 1 + 2 & )  (40) 
which is identical to that for the analogue neural network with a sigmoid response 
function if p-' is interpreted as the analogue gain in the sigmoid. This coincidence is 
reasonable since the boundary between the para and spin glass phases is determined 
only by the behaviour of the response function near the origin. 

Y Y 

Figure L Diagrammatical explanation of the Manvell mle for selecting a suitable solulion 
of equation (34). ?he slraight line stands for y = p-'Y and the piecewise linear cuwe 
for y = uY - f s ( Y )  + (< - 4)m + oz. The figures are for the cases that [a) 
I < z.(z -(< - a)m/o), (b) I = I. and (e) I > I., lerpectiveiy. In (a) and (b), as 
maked by black doh, the solutions corresponding to the nods asswaled with a brger 
area which is enclosed by the WO wmes should be adopted. The value of Y jumps 
from -Y. IO Y.(r  JyO/[p-' - v +  4) at I = z.. 

It is necessary to solve equations (31)-(33) numerically to study the retrieval 
phase of the system. We deal with the case of unbiased random pattems, i.e. a = 0 
for the sake of simplicity. Note that we can set Yo = 1 in equations (31)-(33) 
without any loss of generality by rescaling the variables as Y/Yo 3 Y, m/Yo 
m, u/Yo + U, q/Y: 3 q. The critical storage capacity is shown in figure 2(a) as 

the Boltzmann machine, for various values of self-coupling J .  The storage capacity 
of the present neural network increases with an increasing J .  It, however, does not 
exceed 0.138, the maximal storage value corresponding to the vanishing temperature 
limit of the Boltzmann machine or to the infinitely large gain limit of the analogue 
neural network with a sigmoid response function. It is also seen that no retrieval 
solution exists for p-' > 1, iust as neither the Boltzmann machine nor the analogue 
network with sigmoid response exhibits a retrieval phase when the temperature or the 
inverse analogue gain is greater than unity. A characteristic feature of the present 
neural network is that there exists a finite optimal value for the analogue gain p 
that maximizes the storage capacity at a given value of J .  Note that the results are 
consistent with the condition (14), that is 1 - J < P-' < 1, which will be interpreted 
as the phase boundary at the limit a 3 0. 

It i., also noted that condition (8) is satisfied in the whole region of the retrieval 
phase for all values of J .  Therefore no run-away trajectories appear in the dynamical 
evolution of the present neural network model if the number of stored patterns is 
less than the critical storage level aC N .  

2 filnrtinn & R-1 whirh m n ~ ,  n1-11 n &mil=r ~ I P  +A tho +~mn~nl+ .nm n - r - m ~ + a ~  :- .. , .. L...,.. .L."J Y."J Y "......"a A".' L" L.." L.,'..y.,L"."L' y".a.l.'L'. "1 
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Plgure 1 The results of the K S N A  for (a) cnlical dorage napacities and (b) paltem 
overlaps at the critical storage levels shown as functions of the inverse analogue gain 
8-' for various values of selfcoupling 3. Mangular points plot the simulation results 
ior Z = i . 5  on ihe neiwort wiih N = 3000, which are in msonabie agreement wiin 
Ihe gSNA resulls For the paramelen 01 and p which are marked by the dots 'a* and 
'V, typical features of the time evolulion of the pattern overlap are shown respeclively 
in figures 3(0) and 3(b). 

The retrieval-phase solutions of equations (31)-(33) for the overlap m/Yo are 
shown in figure Y b ) .  It is noted that the values of the overlap obtained by SCSNA 
are quite consistent with those estimated in section 2 for the case of finite number of 
patterns (see equation (15) and the paragraph below it). For instance, the overlaps 
for the three cases that J = 1.5 and p = 0 . 2 , 0 . 5  and 0.8 are obtained respectively 
as m/Yo = 2.21, 1.51 and 1.07 in SCSNA, while they are estimated as 214, 1.50 
and 1.15 from the finite-pattern result m/Yo = J / ( p - '  + J - 1) ( for a = 0, 

Since the output of each neuron is not bounded by unity, m/Y, takes an arbitrar- 
ily large number. Therefore the quantity, which is a natural order parameter of the 
present system, is inappropriate for measuring the retrieval quality. Then it will be 
useful to introduce quantity Q, which represents the quality of retrival: Q ,  ratio 
of the number of neurons with zi$'/& > 1 to total number N .  Once the output 
Y ( z )  is obtained, Q, can be easily calculated by Q,  = J D z O ( ( Y ( z ) / Y ,  - 1) .  It 

retrieval phase. 
We have conducted a numerical simulations on a neural network with 3ooo neu- 

rons to observe the dynamical behaviour of the present model and to compare it with 
the result obtained using SCSNA. In figure 3(a), we show examples of the time evo- 
lution of the pattern overlap started with various initial values for the case allowing 
retrieval states. It is seen that the initial pattern overlap m(O)/Y, should be larger 
than a certain threshold value in order for the network to retrieve a memory pattern 
when the storage level is lower than the corresponding critical storage capacity (Amari 
and Maginu 1988). As the storage level increases, so does the threshold. When, on 
the other hand, the storage level is higher than the critical storage capacity, retrieval 
hardly takes place for any values of the initial pattern overlap (figure 3(b)). In the 
phase diagram shown in figure 2(a),  the two cases in figures 3(a) and 3(b) are marked 
by the dots 'a' and 'b', respectively, with both points satisfying condition (8). The 
storage capacity which was estimated by the simulations as the most probable value 
of (2 at which the system ceases to possess a threshold value for some cases with 
J = 1.5 is plotted by triangles in figure 2(0).  The simulation results are reasonably 

,(P) = p-ls(")). 

:r f n n n n r l  +hot A Ana. nnt ~ a n ~ i t i . i o l s r  rlononrl nn T gnrl hoenmo~ n1mfi.t ..n:hr :n thn 
0 L"".,Y L,.". vv  "VU., l l " L  1'L."'LL".J "'y,.." ".. U ".&U --...lo "..L.W. ".,,LJ .., ,,,U 
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d "  c 2 4 b 8 I U  t 
1 c 0 4n B 2 0 0 I V  

I 

Figure I ExamplPs of simulations of lhe relneval pmcess of lhe present network system 
with N = 3000 when (a) a 5 a, and (b) 01 2 as. I h e  parameters used are a = 0, 
p-' = 0.4 and J = 1.5. ?he storage levels, (a) a = 0.025 and (b) (1 = 0.3, are a 
little less and larger, respedively, than the a'itical storage rapacity oic = 0.027 which 
is oblained by ~ N A  for 8-l = 0.4 and J = 1.5. me huo cases are marked by 
the dots 'a' and 'b' in lhc phase diagram shown in Agure Z(a). For the initial states 
with m(0)/Yo < 1, z,(0)/Yo is either equal to e$') or -e:') and the probability of 
Bnding z;(O)/YO = e:') is (1  + m(O)/Yo)/Z, while for those with m(O)/& > 1, 
z , (O)  = <ll)m(O)/Yo for arbitrary i. As in the mnventional Hapfield nehvork, the 
system appears IO posses a threshold value for the initial pattern overlap m(0)/Yo 
which yields pattern reuieval. 

consistent with those of SCSNA. In particular we emphasize that the values of m and 
Q, in the retrieval states obtained by the simulation are in good agreement with 
those obtained by SCSNA 

fi Concluding remarks 

We have presented an analogue neural network model in which the response function 
is a simple linear function of the membrane potential unlike the conventional sig- 
moid model. Self-coupling was introduced as an example of a regulation mechanism 
which relies on local feedback neuronal circuits in order to inhibit neuron activities 
exceeding a threshold level. The model constructed this way with symmetric synap- 
tic coupling defines a system with an energy function which has no lower bound in 
certain parameter regions. To confirm the validity of the recently developed SCSNA 
(self-consistent signal-to-noise analysis), which avoids replica calculations and thus 
is very simple, we calculated the storage capacity or the phase boundaries for the 
present network system. The results were compared with those obtained by computer 
simulations on large-size neural networks and exhibited satisfactory agreement 

The SCSNA results show that the storage capacity increases for larger self-coupling 
but never exceeds the well known value a = 0.138 for a conventional Hopfield 
neural network It is noted that a finite optimal value for the linear analogue gain 
that maximizes the storage capacity at a given finite value of the self-coupling exists. 
This will suggest, in general, that the analogue gain should be controlled within a 
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suitable range if neural networks utilize local feedback circuits to regulate neuron 
activities. 

Although the present neural network system could possibly exhibit run-away so- 
lutions due to an energy function unbounded from below, all the retrieval states 
were found to satisfy the network stability condition (8). We note that, as far as 
the equilibrium properties of the network are concerned, the present system will be 
equivalent to an analogue neural network with a transfer function fee(") , where 
fe;'(z) = p-'z + fs(z), which will work normally under the same mndition (8). 
In view of this fact, the availability of the SCSNA should be reasonable in the present 
system. It may be of interest to study whether SCSNA is still valid when dealing 
with stable retrieval states of network systems without stability conditions such as 
equation (8). 
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