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Abstract. We study an analogue neural network model whose response function is linear
and consequently has no asymptotes in order to examine a possible new mechanism for
regulating neuron activities by means of neural feedback circuits. Inhibitory self-coupling
is introduced as an example of such feedback mechanisms, which for simplicity of the
analysis is assumed to be piecewise linear. Our recently developed self-consistent signal-
to-noise analysis is applied to explore the equilibrium properties of the model neural
network. The analysis revealed that there exists a finite optimal value for the linear
analogue gain thalt maximizes storage capacity for a given value of the self-coupling.
The results of the analysis for such equilibrium properties as storage capacity are quite
consistent with the results of computer simulations.

1. Introduction

Various attempts have been made to understand the retrieval properties of analogue
neural networks since the models are of importance from the point of view of elec-
tronic implementation as well as relevance to physiological nerve systems (Hopficld
1984, Marcus and Westervelt 1989, Marcus et a/ 1990, Waugh & af 1990, Fukai and
Shiino 1990a, Shiino and Fukai 1990, Kiihn et o/ 1991, Fukai and Shiino 1991). Usu-
ally in analogue networks, the response function of a neuron is assumed to be of
sigmoid-type with proper asymptotes, which introduces a necessary cut-off for the ac-
tivity of a neuron. It seems, however, that the mechanism for regulating the activation
of neurons has to be studied more seriously since a low firing rate (Miyashita and
Chang 1988, Tsodyks and Feigel’'man 1988, Amari 1989, Treves and Amit 1989, Treves
1990) in living nervous systems may imply the necessity of a very different scheme
for the cut-off of neuron activities. Some authors, for instance, introduced a non-
monotonic response function which may appear as a consequence of local feedback
from surrounding inhibitory neurons to lower the avarage activity level of neurons
(Morita et af 1990). One of the aims of the present paper is to examine the network
properties of the models incorporating a new type of mechanism to regulate excessive
neuron activities.

To this end, we introduce self-coupling into symmetric neural networks as a simple
example of a local feedback mechanism for inhibiting the activity of each neuron.
The self-coupling is assumed to act when the neuron activity exceeds a certain critical
level. In neural networks with an appropriate local inhibition scheme, the response
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function may not necessarily have asymptotes. In the present paper, we assume for
simplicity that the response function is linear, and, consequently, has no asymptotes.
‘The model is found to yield an interesting feature, in contrast to the usual sigmoid-
type analogue neural networks, in that there exists an optimal finite linear analogue
gain which maximizes the storage capacity for a given value of the magnitude of the
self-coupling. _

The introduction of a linear response function with no asymptotes in the present
model may give rise to the drawback that the energy function becomes unbounded
from below in a certain case. We can, however, confine ourselves to discussing the
properties of locally stable fixed points for the memory retrieval of a network attained
by converging dynamical flows even if the energy function is globally unbounded from
below. The conventional thermodynamic approach using the replica method (Amit er
al 1985) will require a delicate argument of its validity in the case of the downwards
unbounded energy function since the thermal equilibrium distribution may not be
properly defined through the stochastic relaxation process which happens to yield
run-away trajectories downwards infinitely.

Recently, by extending the so-called signal-to-noise analysis (McEliece et al 1987,
Peretto 1988, Amari and Maginu 1988, Domany et a/ 1989) which does not require the
existence of an energy function, we proposed a new method, which is straightforward
and easy to handle to analyse the statistical properties of the equilibrium states of
analogue neural networks. The validity of the method (hereafter referred to as
self-consistent signal-to-noise analysis, SCSNA} is ensured for conventional symmetric
analogue networks (Hopfield 1982, 1984, Amit et al 1987) since it yields the same
set of equations for determining the equilibrium states as that derived by means
of the replica method. The method is also available for the analysis of Ising-spin
neural networks when the corresponding Thouless—Anderson-Palmer (TAP) equations
(Thouless et al 1977, Mézard et al 1987) are known. Furthermore, as far as fixed-
point equilibrium attractors are concerned, SCSNA can be applicable even t0 analogue
neural networks with asymmetric coupling. Indeed SCSNA was successfully applied to
an asymmetric analogue neural network to yield a storage capacity which is consistent
with simulation results (Shiino and Fukai 1991). The second aim of the present paper
is to examine whether SCSNA works for the present network model which possibly has
a bottomless energy function.

The paper is organized as follows. In section 2, the model is presented together
with its energy function. The retrieval states for a finite number of patterns is
discussed in section 3. In section 4, SCSNA is applied to the derivation of equations
for the order parameters when the network is loaded with an extensive number of
patterns. In section 5, the equations obtained are numerically solved and the phase
diagram is presented for various cases. Computer simulations are also conducted. We
shall see that the results from SCSNA on the equilibrium properties of the model is in
quite good agreement with those of the computer simulations. Section 6 is devoted
to concluding remarks.

2. Neural network model with self-coupling
We provide a set of variables u; and z; (—o0 < u;, #; < 00, i = 1,...,N)

representing a membrane potential and the output activity of neuron i, respectively.
The response function f which defines the relation between the two quantities x; =
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S(u;) is usually taken to be a sigmoid function with suitable asymptotes, say, f =
tanh(Bu;) with an analogue gain 3. In the present paper, however, we assume
linearity for the response function:

flu) = fu (6> 0). (1)

Now we need to introduce a mechanism to lower the activity of excessively activated
neurons. In the present model, such a mechanism is provided by feedback through
the self-coupling of the neurons, that is the output activity of a neuron is suppressed
by the inhibition introduced through the self-coupling if its activity level exceeds a
certain threshold Y,. If h, and J;; denote the input stimulus for neuron i and the
synaptic coupling between neurons ¢ and j{3 i), respectively, the time evolution of
u; is given by

du,-

g = Wit h (2)

hs'=z:']ijzj_f5(mi) 3

) i#i
with the self-coupling response function

Hz-Y,) z2Y,

fs(x) = {J($+YO) < -Y, (J > 0) 4
0 otherwise,

This equation implies that the seff-coupling term acts as a regulator to adjust the
neuron activity in the neighbourhood of the threshold activity +Y;. Although scsNA
can deal with a certain type of asymmetric synaptic coupling (Shiino and Fukai 1991)
we here assume, for the sake of simplicity, that the synaptic coupling is given by the
standard Hebb rule, ie.

4
Ty = g o e -0 it (5)

where each component of p embedded biased random patterns {{S“}} (n=1,...,p)
takes on +1 and —1 with probabilities (14 «}/2 and (1 — a)/2, respectively,
This model can be shown to have an energy function E:

= 1 1 s 4 2
E a—igj)-fijw.-w,- + 35200+ 5 2~ o) 0 - Yo)

+ (2 + ¥)*8(~=; ~ Yp)l. ©

The condition that equation (6) has a lower bound is easily obtained as follows.
We first note that the necessary and sufficient condition for the non-existence of
such a diverging motion as z;(t) — oo, |z;(t)] < Y, (i = 1,...,rN, j =
rN+1,...,N; 0<r<1)is that the matrix

Mfm=—Jim+6lm((1/ﬁ)+J) l,m:l,...,‘r‘N (7)
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is positive definite. For the Hebb rule (5), this condition is ensured if inequality
J > —(1/8)+ (1 — a?)(1 + 2y/a/r) holds. We now see that

J > —(1/8) + (1 -a*)(1 + 2//a) ®)

ensures the existence of a lower bound for equation (6). In this case, the network
allows no run-away trajectories and hence will function normally as an associative
memaory.

The network state evolves so as to decrease the value of the energy function. Since
the self-coupling (4) is a unique mechanism in the present system for stabilizing the
neuron activity and functions only when the magnitude of output activity is larger

than the threshold, it is naturally expected that 55“ ):c,- 2 Y, in the retrieval state
corresponding to a memory pattern {f,(“)}. In particular for self-coupling J — oo,

PSRN, Vg t(f‘" in the retrieval ctate TFharafara tha ctata ~ IV r(_“‘)‘l uill ha ratricvad
-b' IU.!" ML CEERW ARRL AW TARS LFLAS LW ARV WAVA W LILW OLAALW MW l.los‘ I YYII Ued Illiwvyuwid
for certain values of J, 3 and « = p/N.

We would like to note that the present approach using SCSNA developed for
neural networks with infinitely many patterns will, in principle, be available to the
system in which condition (8) is not obeyed so far as locally stable retrieval states are
concerned.,

3. Case of finite number of patterns

In the present section, we deal with the case in which the number of pattern p
is finite to see how the network functions as a content-addressable memory and
how the retrieval state is defined. For the sake of simplicity we assume that the

nattarnc a randnm and nnhiaced a4 — MY
o bl \“ —

ar tha nuverlan ardar naramet
CALLWL ALY (%W LAAlivdb/Nil GARIME LAILALFAGAD ¥l lu}l LA MWL

Mofininga are
IR S LT - TR paraiiiciis

¢ (v=1,...,p)as
o= B, ®

one can easily obtain values of v, in equilibrium states of the network which will be
classified into the following three types according to the cases Bu; > Y, fu; < =Y,
and |,3u,| < 1/0:

Ey fEU)g(V) + JYO

N . () ()
ve S if 5?{, g’ > Y,
T 600 _ gy, () g(v)
_ ., . R v -_—
u; 1+ 8J ]fﬁ;& e .

v =3 &M i <Yy

14

By Eg

Substituting equation (10) into equation (9) in turn yields the self-consistent equation
for g(¥):

(MM 4 JY,
0 = B 5 W () _ vy b g + Y,
=g 26 [6(62“;5, g - Yy St
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N g™ — gy,
1+ 3J

+ 9(_ﬁz££u)g(u) - YO)EA
I

+00Y, - BT P g0(Y + AT €PN 09D an
“ 7 A

The sum over i will be carried out by introducing the concept of a ‘sublattice’ due
to the finiteness of p (Hemmen 1982, Riedel et a/ 1988, Shiino ef al 1989, Shiino
1990, Fukai and Shiino 1990b, Domany ef @/ 1991). Assuming a p-dimensional vector
¢ of the hypercube H? = {—1,1}? to represent the sublattice {i|¢*) = £(*),v =
1,...,p}, one can rewrite equation (11) as

A} (A
g(") — ﬂ 2 € Hp?"(f)f(y) [g(ﬁZE(#)g(#) — 1/0)2) f(l)i(ﬁ)‘]-l" J)/D
£ "
5, 6NN _ gy,

+6(=83_ Wy —v)
~ 0 1+ 3J

+0(Y, — BT EPGN0(Y, + AT €PN TN a2
H n A

where »(£) is the ratio of the size of sublattice specified by £ to the total number of
neurons N and is taken to be 2~7 for each £ due to the assumption that the patterns
are random and unbiased.

We now consider the p = 2 case to elaborate on the solution to equation (12).

Setting X (£1),6®) = $°2_ £()g") in equation (12) and noting X(—1,-1) =

—X(1,1) etc, one obtains

X+ JY, X -JY,
14 3J 1+ 3J

with X representing any of X(1,1), X(1,-1), X(-1,1) and X(—1,-1). The

solution to this equation other than the trivial one X = 0 is given by

871X = 6(BX-Y,) +0(-8X-Y,) +0(Y,-BX)0(Y,+68X)X

+4JY,
X = ——aeme—— 13
T+A7 -7 (13)
under the condition
B82J
—— > 1. 14
15876 (14)

Noting ¢ = (X(1,1) + X(1,-1))/2 and ¢*® = (X(1,1) — X(1,-1))/2, one
has

m=_%AY g
1+8J-58 (15)
1+8J-5
1 AJY,
N =g = L2 0

W =g®=0. (17)
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It is easily seen from equation (15) and inequality (14) that the solution g(*) =
1£8JY, /(1 + B - ), ¢ = 0 implies fu(1,1) > ¥,, Bu(1,-1) >
Yy, Bu(~1,1) < Y, and Bu(-1,-1) < -Y, when u(£W), 5?2)) stands for the
membrane potential of neurons belonging to the sublattice labelled by £. In other
words, this solution represents the retrieval state of the pattern {551)} in which the
output of neuron : satisfies Gu, E(l) > Y.

Thic aranmant ran he nnc-l\r pvfpnrlnrl t0 the racacw nth »n ~ 9 in whirh tho Ah-up\ 1
A 1Ly ulsulll\-ﬂ'lll LY L e Ly J‘ R LW LN WA T ALY YYALLL P o e LA YYILIWAE Lil%wr D%l iwral

state corresponding to pattern j is found to exist only when the condition (14) i
satisfied, ie. 1 —J < 87! < 1, and to be represented by g(*) = +64*8JY, /(1 +
BJ-B), v=1,...,p

4. Self-consistent signal-to-noise analysis

We now proceed to deal with SCSNA of the present network which is loaded with
infinitely many patterns. For the time being, we assume an arbitrary input-output
response function f to show the general framework of SCSNA. SCSNA is based on the
systematic splitting of the signal and noise components of the local field ~; appearing
in the fixed-point equation obtained from equation (2): )

2y = f(hy) = f( S E - aym® — a1 - a?)a; — fs(m.-)) as)
p=1

where m(®) = (1/N) (&%) — o)z, are modified pattern overlaps which yield
order parameters to the present system. Consider the retrieval state corresponding to
pattern {£{7}, that is m() ~ O(1) and m(») ~ O(1/+/N) (p > 1). SCSNA should be
distinguished from conventional signal-to-noise analysis (McEliece et a/ 1987, Perctto
1988, Amari and Maginu 1988, Domany er a/ 1989) in which 3°,.,(£() — a)m(®)
is viewed as a Gaussian noise with mean 0. Such a npaive treatment of the noise
component proves to be incorrect although it seemingly recovers the result of the
replica calculation by Amit e a/ (1985). In SCSNA, one can properly deal with the
previously mentioned term to extract a Systematic contnbunon which is proportional
to output x,.

Fixed-point equation (18) implies that &; can be formally solved as a function of

o1 (€7 ~ aym®.

z; = f(zp:(fﬁ”) ~ aym). (19)
p=1

T work with SCSNA, we first evaluate the pattern overlap for noise-generating patterns
(&t (p > 1) which can be written as

= 7 T -0 (6 - m + T - o) (0)

pEp

By expanding the right-hand side of this expression with respect to m{?), we can

obtain
mP = E(E(P) ﬂ)}—(

Z(E(#) a)m(#)) (21)

uEp
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where

C'= = SR - a)zf’(Z(sﬁ“’ - a)m“*))

L#Ep

= - ({7 (e - am))) @2

wEP

with (- -)) denoting averaging over biased memory patterns.
Now these formal expressions for the pattern overlaps are substituted into the

noise-generating term 2 = Ew,({g’“) ~ a)m(#) to yield

N
2= ey L -0 L -0 T -am@) e

p>1 Bi#Ep

where C = ((F')). To extract a systematic part from 2, we split the j-summation in
(10) into 7 # ¢ and j = ¢ terms. Since the former is a sum of almost uncorrelated
random variables with mean 0, it will be assumed to yield a noise z

2= ;_(1—1_(12)5%2055”) —a) Y (€ - a)f(Z(fS'” - a>m<“>) (24)

p>1 i#i nEp
which obeys a Gaussian distribution with mean 0 and variance

a(l —a?)q
[1-(1-a?)C)?

o? = () =

(25)

Here we defined g = {{F2)} which serves as the Edwards-Anderson order parameter
for the present system. On the other hand, the j = 7 term yiclds a non-vanishing
systematic part:

a(l - a?)

Noting that local field is given by h; = (£ —a)m®") + Q- a(1-a?)x; - f5(z;), we
now obtain from equations (18), (19) and (26) the following equation that determines
the output response Y = F implicitly as a function of noise z:

_a2y2
Y=f((§—a)rn+z+:x—_(1—(l—§—c32—)%

Y - fs(Y)) 27
where we have renamed £(") and m() as £ and i, respectively. Now the separation
of the signal and noise components is properly done since equation (27) completely
determines the dependence of the response on signal (£ — a)m and noise z.

This expression reveals that local field h; obeys a non-Gaussian distribution due to
the nonlinearity involved in equation (27) although noise z has been assumed to obey
a Gaussian distribution. The appearance of the systematic part propartional to cutput
Y in the local field of equation (27) is characteristic of analogue neural networks
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and is not observed in stochastic neural networks like the Boltzmann machine. This
is because that part is cancelled out by the Onsager reaction term appearing in the
TAP equation for the Boltzmann machine. The extraction of the systematic part from
noise component in the local field h; has been performed in order to define the
effective output Y in a self-consistent manner, as seen from equations (20)—(27). For
this reason, the present method may be called SCSNA.

Using the definitions of m, q and C' and assuming that the average (- -)) can be
replaced by the average over noise =z and condensed pattern £, one obtains what is
usually called saddle-point equations in the neural network theory:

m={ [ Doste-a)¥(=)) . 9
a={ [ .+7(2?) @)
o= ([ D,Zv(») (30)
De= ey (-2)

where (.-} stands for the average over £ and ¢ is determined by equation (23).
Solving this set of equations for m, g and C, we obtain phase boundaries for the

analogue neural networks: retrieval phase (m # 0, g # 0), spin glass phase (m =

N .. £t N\ and Aicnrdorad nhaca o e 1 o — NN
Uy q r U} QLI MV WU T Plluﬂ\l \l’" —_— Wy ‘1 — U)'

5. Phase boundaries

The SCSNA explored in the previous section can be applied straightforwardly to the
present neural retwork to obtain

m = (fR Dz(¢ - a)Y(z)> | (31)
¢= </R DzY(z)2> 62)
\/gl Y= < fR DzzY(z)> (33)

Y = B((§ - a)ym+ oz 4 vY - f5(Y)) (34)

o= \/rg(‘u-f-a(l——az)) (35)

Dz =

dz L 2
mexp( 12

from (28)—(30) after a change of variable v = a(1 — a*)2C/(1 - (1 ~ a*)C) and
a rescaling 2 /o — z of the Gaussian integration variable. In general equation (34)
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allows more than one solution. For such a case, we assume that the available solution
can be selected by applying the Maxwell rule as will be shown below. This recipe
was justified in the case of symmetric analogue neural networks with energy functions
bounded from below where the saddle-point method in the replica calculation ensures
the validity of the Maxwell rule. We list all the possible cases to be considered,
although only case A occurs in the numerical analysis of equations (31)—(33) within the
parameter regions which we will study later. Note that we have assumed G, J > 0.

Case A (3~1 —v > 0) and case B (3~! — v < —J). The solution of equation (34) is
uniquely determined for any values of z and is given by

oz+(E—a)m+ JY,

Y = e 2>z,

VeI < 6o
Y = z;_(f_——_:)—m otherwise

o = T ZOYom Eam

for case A. The inequality signs should be reversed for case B.

Case C (0 > 8~ —v > —J). In a certain range of z, multiple solutions are allowed
for equation (34) as shown in figure 1 where the solutions are given by nodes of the
two curves representing both sides of the equation. Then the available solution will be
given by the one (marked by black dots) determined by the Maxwell rule which states
that the solution corresponding to the nodes associated with a larger area enclosed by
the two curves should be more stable than the others. Therefore we adopt a solution
with negative ¥ when 2 < z, = —(£ — a)/o and the one with positive Y when
z > z,. The value of Y jumps from —-Y, o Y, (Y, =JY, /(371 -v+ J) >0) at
z = z,. Thus

cz+(E—a)ym+ JY,

Y= Bl—v+J ‘> o7
_oz+(E—a)ym-JY,
Y = BT vt J z < 2,.

The phase boundary between para and spin glass phases 18 easily obtained by
linear analysis around . = ¢ = 0. Noting that a solution with vanishing ¢ can
be allowed only in case A, and z;, ~ *JY,/0 — +oo, we can easily perform the
Gaussian integrations involved in equations (32) and (33) to obtain

v —a?)]?
1= :(;_(11* v)z)] (38)
v _'u+a(1—a2)- (39)

1-a2~ B 1-w
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From equations (38) and (39), we derive the equation that yields the disordered spin
glass phase boundary:

A7 =(1-a*)(1 +2Va) (40}

which is identical to that for the analogue neural network with a sigmoid response
function if 3~! is interpreted as the analogue gain in the sigmoid. This coincidence is
reasonable since the boundary between the para and spin glass phases is determined
only by the behaviour of the response function near the origin.

y y y
, N2 )
¥ ; Y. ¥ ¥
(@) (b) (€

Figure 1. Diagrammatical explanation of the Maxwell rule for selecting a suitable solution
of equalion (34). The straight line stands for y = §~'Y and the piecewise lincar curve
for y = vY - fs(Y) + (£ — a)m + oz The figures are for the cases that (a)
2 < 2u{= ~(£— a)ym/o), (B) 2 = z. and (¢} z > z., respectively. In (4) and (b), as
marked by black dots, the solutions corresponding to the nodes associated with a larger
area which is enclosed by the two curves should be adopted. The value of Y jumps
from —Y. to Yo(= JYo/[f - v+ J]) at 2= z..

It is necessary to solve equations (31)—(33) numerically to study the retrieval
phase of the system. We deal with the case of unbiased random patterns, ie. a = 0
for the sake of simplicity. Note that we can set Y; = 1 in equations (31)-(33)
without any loss of generality by rescaling the variables as Y/Y, — Y, m/Y, —
m, /Y, — o, q/Y# — q. The critical storage capacity is shown in figure 2(a) as

. —1 + * *
a function of §~*, which may play a similar role to the temperature parameter in

the Boltzmann machine, for various values of self-coupling J. The storage capacity
of the present neural network increases with an increasing J. It, however, does not
exceed 0,138, the maximal storage value corresponding to the vanishing temperature
limit of the Boltzmann machine or to the infinitely large gain limit of the analogue
neural network with a sigmoid response function. It is also seen that no retrieval
solution exists for 5~! > 1, just as neither the Boltzmann machine nor the analogue
network with sigmoid response exhibits a retrieval phase when the temperature or the
inverse analogue gain is greater than unity, A characteristic feature of the present
neural network is that there exists a finite optimal value for the analogue gain 3
that maximizes the storage capacity at a given value of J. Note that the results are
consistent with the condition (14), that is 1 —J < #~! < 1, which will be interpreted
as the phase boundary at the limit o — 0.

It is also noted that condition (8) is satisfied in the whole region of the retrieval
phase for all values of J. Therefore no run-away trajectories appear in the dynamical
evolution of the present neural network model if the number of stored patterns is
less than the critical storage level a N.
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2.5

"p

.2 . . . 1
0 0 04”B06 0.8

Figure 2 The results of the scsNa for (g) critical storage capacities and (b) pattern
overlaps at the critical storage levels shown as functions of the inverse analogue gain
B~ for various values of self-coupling J. Triangular points plot the simulation results
for J = 1.5 on the network with N = 3000, which are in reasonable agreement with
the SCSNA results. For the parameters o and § which are marked by the dots ‘a’ and
", typical features of the time evolution of the pattern overlap are shown respectively
in figures 3(a) and 3(b).

The retrieval-phase solutions of equations (31)-(33) for the overlap m /Y, are
shown in figure 2(b). It is noted that the values of the overlap obtained by SCsNa
are quite consistent with those estimated in section 2 for the case of finite number of
patterns (see equation (15) and the paragraph below it). For instance, the overlaps
for the threc cases that J = 1.5 and 3 = 0.2,0.5 and 0.8 are obtained respectively
as m/Y, = 2.21, 151 and 107 in SCSNa, while they are estimated as 2.14, 1.50
and 1.15 from the finite-pattern result m/Y, = J/(f~' + J - 1) ( for a = 0,
m#) = 3=,

Since the output of each neuron is not bounded by unity, m /Y, takes an arbitrar-
ily large number. Therefore the quantity, which is a natural order parameter of the
present system, is inappropriate for measuring the retrieval quality. Then it will be
useful to introduce quantity Q,. which represents the quality of retrival: @, = ratio

of the number of neurons with x; E (0/¥, > 1 to tota} number N. Once the output
Y (z) is obtained, @, can be easnly calculated by Q, = [Dz8(£Y(2)/Y, - 1). It

mity 1 tha
is found that @, does not sensitively depend on J and becomes almost unity in the

retrieval phase.

We have conducted a numerical simulations on a neural network with 3000 neu-
rons to observe the dynamical behaviour of the present model and to compare it with
the result obtained using SCSNA. In figure 3(a), we show examples of the time evo-
lution of the pattern overlap started with various initial values for the case allowing
retrieval states. It is seen that the initial pattern overlap m(0)/Y; should be larger
than a certain threshold value in order for the network to retrieve a memory pattern
when the storage level is lower than the corresponding critical storage capacity (Amari
and Maginu 1988). As the storage level increases, so does the threshold. When, on
the other hand, the storage level is higher than the critical storage capacity, retrieval
hardly takes place for any values of the initial pattern overlap (figure 3(b)). In the
phase diagram shown in figure 2(a), the two cases in figures 3(e) and 3(b) are marked
by the dots ‘a’ and ‘b, respectively, with both points satisfying condition (8). The
storage capacity which was estimated by the simulations as the most probable value
of o at which the system ceases to possess a threshold value for some cases with
J = 1.5 is plotted by triangles in figure 2(a). The simulation results are reasonably
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Figure 3. Examples of simulations of the retrieval process of the present network system
with N = 3000 when (@) o < o and (b} o 2 ec. The parameters used are a = 0,
B~1 =04 and J = 1.5. The storage levels, (¢) o = 0.025 and (b) & = 0.3, are a
little less and larger, respectively, than the critical storage capacity ac == ¢.027 which
is obtained by scsNa for A= = 0.4 and J = 1.5. The two cases are marked by
the dots 2’ and ‘b’ in the phase diagram shown in figure 2(z). For the initial states

with m(0)/ Yy < 1, £;(0)/Y; is either equal to &") or ~¢{!} and the probability of
finding z;(0)/Yo = £ is (1 4+ m(0)/Ys)/2, while for those with m(0)/Y, > 1,
z;(0) = sf.—l m(0)/ Yy for arbitrary i. As in the conventional Hopfield network, the

system appears to possess a threshold value for the initial pattern overlap m{0}/Y,
which yields pattern retrieval.

consistent with those of SCSNA. In particular we emphasize that the values of m and
@, in the retrieval states obtained by the simulation are in good agreement with
those obtained by SCSNA.

6. Concluding remarks

We have presented an analogue neural network model in which the response function
is a simple linear function of the membrane potential unlike the conventional sig-
moid model. Self-coupling was introduced as an example of a regulation mechanism
which relies on local feedback neuronal circuits in order to inhibit neuron activities
exceeding a threshold level. The model constructed this way with symmetric synap-
tic coupling defines a system with an energy function which has no lower bound in
certain parameter regions. To confirm the validity of the recently developed sCSNA
(self-consistent signal-to-noise analysis), which avoids replica calculations and thus
is very simple, we calculated the storage capacity or the phase boundaries for the
present network system. The results were compared with those obtained by computer
simulations on large-size neural networks and exhibited satisfactory agreement.

The SCSNA results show that the storage capacity increases for larger self-coupling
but never exceeds the well known value « = 0.138 for a conventional Hopfield
neural network. It is noted that a finite optimal value for the linear analogue gain
that maximizes the storage capacity at a given finite value of the self-coupling exists.
This will suggest, in general, that the analogue gain should be controlled within a
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suitable range if neural networks utilize local feedback circuits to regulate neuron
activities.

Although the present neural network system could possibly exhibit run-away so-
lutions due to an energy function unbounded from below, all the retrieval states
were found to satisfy the network stability condition (8). We note that, as far as
the equilibrium properties of the network are concerned, the present system will be
equwalent to an analogue neural network with a transfer function f.q(u) , where
f(z) = B 'z + f5(x), which will work normally under the same condition (8).
In view of this fact, the availability of the SCSNA should be reasonable in the present
system. It may be of interest to study whether SCSNA is still valid when dealing
with stable retrieval states of network systems without stability conditions such as
equation (8).
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